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“Static Analysis of Three Span Cable Stayed bridges
having three levels of cable attachments with pylons”
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Abstract

The main object of this research is concerned about the best choice of the mathematical
model to carry outthe static analysis for cable stayed bridges having three levels of
cables attached with pylons of floor beams in radiating shapes. A studying case on cable
stayed bridge has two equal exterior spans of 265m, each, and interior span of 530 m is
carried out with four cases of loading which include the most symmetric traffic loads are
considered. The work is concerned with the effect of initial tension in inclined cables on
the outcome responses of some cable bridges. A technique for the choice of the best
initial tension in cables depending on an iterative scheme to give the minimum static
responses [1]. This technique is termed " circle of solution”. In the static analysis, the
energy method, based on the minimization of the total potential energy of structural
elements, via conjugate gradient method.
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1 - Introduction

Cable stayed bridge are the bridge
systems in which the decks are
supported by cables. The load from the
deck are transferred to the towers then to
the ground, or directly to the base rocks
if no tower adopted instead of ground
anchors. Generally, the cable stayed
bridge consist of the following parts:
stiffening girder, cable systems ,towers,
and anchors bodies. The cable-stayed
bridge has been developing rapidly since
World War II, and becomes one of the
most competitive types of bridges for
main spans ranging from 300 to 1200
meters. The Normandy bridge (865
meter, 1995, France) and the Tatara
bridge (890 meter, 1999, Japan) showed
the potential to compete with the
suspension bridge in the lower end of its
rational span range. For some soft soil
bridge sites, on which building of the
anchor will dramatically increase the
overall cost, a long-span cable-stayed
bridge would be the first candidate. It is
feasible to build a cable-stayed bridge
with a main span as long as 1200 meters.
The results of some feasibility studies on
building a cable-stayed bridge with a
main span over 1000 meters motivated
some huge bridge projects in Southeast
Asia [2].

The most common cable stayed bridges
may be classified as harp, radiating, star
and fan shapes depending on the
arrangements of cables and their
connections with pylons and decks. The
own weight of all structural elements
with all various considered cases of
equivalent traffic loads are considered.
The analysis is carried out considering
cable and space frame elements for
cables and pylons and floor beams,
respectively. The Energy method is a
unifying approach to the analysis of both
linear and non-linear structures. It is an
indirect method of analysis and valid for
both small and large structures. The
energy method is applied to the analysis
of general pin-ended truss and cable
structures. A summary together with a
step-by-step iterative procedure is
presented. Main sources of knowledge
about this method are given in[3], [4],
[5], [6] and [7]. The obtained numerical
results for all cases are discussed and
compared.  Finally, the  major
conclusions are presented.

2. Step- by —step static response
analysis by minimization of the
total potential energy using the
conjugate gradient technique.
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The point at which W (total potential
energy) is a minimum defines the
equilibrium position of the loaded
structure. Mathematically, the
equilibrium condition in the i direction at
joint j may be expressed as:

2 —1g,1=0

n

,i=1,2and 3 (1).

The location of the position where W is
a minimum is achieved by moving down
the energy surface along a descent vector
v a distance S, until W is a minimum in
that direction, i.e , to a point where :
w

as ().

Where:

xﬂ=

corresponding to a particular degree of
freedom in direction, i, and

g;; = the corresponding gradient of the
energy surface.

From this point a new descent vector is
calculated and the above process is
repeated. The method is mathematically
expressing the displacement vector at the
(k+1) th iteration as:

[X]k+1 = [X]k + Sk Vi = 3)
Where:

Vg = the descent vector at the K™

the displacement of joint j

iteration from xy in the displacement
space, and

Sk = the step length determining the
distance along Vi to the point where W
is a minimum.

The method is shown diagrammatically
in Fig. (1).

Summary of circle of solution|[1].
The main steps in optimum outcome
responses shape technique through the
iterative processes required to achieve
structural equilibrium by minimization
of the total potential energy may be
summarized as follows:

I-Consider in the first cycle an initial
tension in all cable members as a 10%
of the minimum ultimate value , T,,
then:

II-First, before the start of the iteration
scheme  Calculate the  tension
coefficients for the pretension forces in
the cables by:

L =|:(To +Ee}'}£{,]
L "

Where: tj, = the tension coefficient of
the force in member jn ;

e =elongation of cables due to applied
load;

Ty = initial force in a pin-jointed
member or cable link due to pretension;
E = modulus of elasticity;

A = area of the cable element, and
Ly = the unstrained initial length of the
cable link.

Assume the elements in the initial
displacement vector to be zero.

Calculate the lengths of all the elements
in the pretension structure using the
following equation:
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L?! =2(an _X,ri')z
i=1

Where: X = element in displacement
vector due to applied load only, for using
method of conjugate gradients is used,
calculate the elements in the scaling
matrix.:
H'——dfag{k] 12 k;-_zms k;r:ﬂ}----(ﬁ)
Where: n = total number of degrees
of freedom of all joints, and
k is the main diagonal element in
frame stiffness matrix for flexural
elements.
ITI- The steps in the iterative procedure
are then summarized as:
Step (1) Calculate the elements in the
gradient vector of the TPE, using:

(2, =5: 3 0n), 5 o) [ 2] -1

ee(7)
Step (2) Calculate the Euclidean norm of

112
=[e7g.]”, and
check if the problem has converged. If

Ry <Ry, stop the calculations and print

the results. If not, proceed to step (3).
Step (3) Calculate the elements in the
descent vector, v using:

V]ea = _[H Ig ]k+| + By [v]k sl 8)
Where bh=-Aek (9)

the gradient vector, R,

and ,

_ el [H] [H]gl.
A BT ]

Step (4) Calculate the coefficients in the
step-length polynomial from:

------------ (10)

,
C, =Y (E4a}/2L}),

=1

A
C, = Z(EAazaa 1),

C = Z[:,a,+£;4(a’+2aa,]!21nl ﬁzz[ vk v]

=l sul rul

¢, = E 195 +m1a2mol+g ¥ E(xsk"vs) y_

n=ls=lr=|

Where:

f =number of flexural members, P =
number of cable links,

F = element in applied load vector, and
Ky = Element of stiffness matrix in
global coordinates of a flexural element.
Step (5) Calculate the step-length S
using Newton's approximate formula as:
4c,8" +3C’aS2 +2C,5+C,

12¢,8* +6C,S +2C,
- e (13)

Where: k is an iteration suffix and

Sia =8, —

S=0=0 is taken as zero

Step (6) Update the tension coefficients
using the following equation.

(Tapdin = W) +

(a, +ays+a,s%),,

_E4
(Lf] )ab

(14)
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Step (7) Update the displacement vector
using equation (3).

Step (8) Repeat the above iteration by
returning to step (1 ).

IV— Take the final tension in cables for
each group of cables as an initial tension
and start again with IL

V- In each cycle of solution, the ratio of
the vertical displacements in deck floor
or lateral sway in pylons in cable-stayed
bridges and shafts in guyed towers at
control points , to those at main
structural points, p , will be checked. i.e.
p < € , where € is the convergence
tolerance. The cycles of solutions will
be repeated until the convergence
tolerance is achieved otherwise continue
with step I

4. Geometry and properties of bridge

A three span cable stayed bridge has two
equal exterior spans of 265m, each, and
interior span of 530 m. The deck girder
has a total span of 1060 m . The bridge
is symmetric and is composed of three
major elements: (a) the deck girder, (b)
the pylons and (c) eight cables on each
side of pylon shown in Figs.(2,3) . The
cables types are spiral strand bridge
cable. [11] . The properties of cables
,pylons and deck are given in Table [1].

5. Analysis Considerations

The model is carried out for the four
cases of loading as shown in Fig.(4).
This model has 1302  degrees of
freedom .The analysis is carried out for
all four cases of loading. Many examples
are solved to explain the factors
affecting the analysis of cable-stayed
bridges. These factors are pylon height
relative to central span, and cable
pretension.

The pylon height relative to the central
span of the bridge (H/L) varies between
0.2 and 0.5, with interval of 0.1.The
initial tension in cables in all cases is
taken (5%,10 %,15 % and 20% )of of the
minimum ultimate value , Tu. Using
circle solution technique .Four circle
were carried out.

All prepared computer programs used in
this research with its verification is given
by [13].

Figures (5) to (8) show the values of the
displacement along the floor beam due
to changing in the initial tension, and
(H/L) ratio for case 1.

Figures (9) to (12) show the values of
the bending moment along the floor
beam due to changing in the initial
tension and (H/L) ratio for case 1.
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Figures (13) to (16) show the of the
normal force along the floor beam due to
changing in the initial tension and (H/L)
ratio for case 1.

Table [2] gives some obtained results for
other cases.

Fainally , the model with (H/L) = 0.3 is
carried out, using circle of solution
technique .

Figure (17) show some of the obtained
results for this solution..

The obtained results for circle of
solution is give in Table (3).

Figures (18) to (20) show some of the
obtained results for circle of solution.

6. Conclusions

It may be concluded that

1. Increasing (H/L) ratio Jled to
decreasing the deflection along the
floor beam.

2. Increasing the intial tension from 5%
to 20% causes decrasing the
deflection along floor beam.

3. Using optimum outcome response
shape technique gave a significant
reduction in deflection and moment
in floor beam.This reduction varies
between 75 to 85% for
deflectionand 20 to 30% for

moment.

4. The initial tension in cables plays an
important role in the analysis of
cable structures.

Finally: to get up the minimum
deflection, it is required to increasing
(H/L) ratio up to 0.3 then the effect of
intial tension can be taken in second
category.

Using optimum outcome
response shape technique gave a

significant reduction in deflection and
moment in floor beam.

8-Symbols

T.P.E.= total potential energy,

H = the height of pylon above floor
level,

H/L =pylon height to span ratio,
D.L.=own weight of structural elements
including weight of asphalt (dead load).
L.L.= an equivalent uniform traffic loads
including impact as live loads.
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Fig .(1). Contour map indicating diagrammatically the basic method, based on the
minimization of the total potential energy.

Fig .(2).Three dimensional model of
cable stayed bridge
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Table (1) : propere s of pylon, deck o or and cables-stayed bridges.

Properties of sections loads
Description of Young's inertia | Inertia | Torsion Dead | Live
Structural element et 6l Area
structural elements o L I Constant load load
m 1
t/em2 m* m?* m? L ko
0
Sec A 300 7.04 9.5 2.655 54 17.6
Hollow
Vertical member rectangular
R.C. section 11.6
= Sec B 300 § 23.31 10.473 21334 29,10 0
A Square cross
trasverse beam with dimensions 1x1 m. The width of the bridge is 24 m.
reinforced concrete
Longitudinal Steel box girder in
silistrople plbie sl 2100 | 2.5771 | 4.6585 | 134222 69.44 Figure (3)
orthotropic plate shape
-ﬁ beam
b
(=]
trasverse beam built I- section 2100 0.12 0.01042 0.0544 0.0543 2.5 0
iral strand bridge
Cables " b o 1472 | 0.01101 Diameter =17.3 em 0.0891
cable

CASE

CASE

D.L+L.L I___l D.L

1.343 t/m 0.843 t/m
;[_\ITIIIIIIIIII_J&];IJIIIHII[I]!IB II&IIIIJllilllll‘ﬁlllllIII]IJII_‘I&

Strip.1 Fig.(4). Case of loading Strip. 2
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Fig.(5): Deflection for floor beam with various H/L at 5% initial tension
Case (1)
1
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Fig.(6): Deflection for floor beam with various H/L at 10% initial tension
Case (1)
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Fig.(7): Deflection for floor beam with various H/L at 15% initial tension
Case (1)
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Fig.(8): Deflection for floor beam with various H/L at 20% initial tension
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Fig.(9):Bending moment along floor beam for various H/L at initial tension = 5%
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Fig.(10):Bending moment along floor beam for various HIL at initial tension = 10%
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Fig.(11):Bending moment along floor beam for various H/L at initial tension = 15%
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Fig.(12):Bending moment along floor beam for various H/L at initial tension = 15%
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Fig.(13):Normal force along floor beams for various of H/L at 5% initial tension.
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Fig.(14):Normal force along floor beams for various of H/L at 10% initial tension.
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Fig.(15):Normal force along floor beams for various of H/L at 15% initial tension.
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Fig.(16):Normal force along floor beams for various of H/L at 20% initial tension.
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Case 2 Case 3 Case 4
To
% | Deflection Bending Normal | Deflection Bending Normal | Deflection Bending Normal
m moment,t,m | force,dt ,m momentt,m | force,t ,m moment,t,m | forcet
5 -1.712 37174 -3375 -5,1554 -51074 6645 -2.3973 33222 -3393
10 -1.3134 35019 -3487 -4.764 -40128 -6635 -1.8976 30618 -3520
H/L=0.2
15 -0.9638 32859 -3599 -4.3721 -35209 -6604 -1.4664 28617 -3635
20 -0.923 30693 -3708 -3.9799 -30269 -6619 -1.0274 26690 -3754
5 -0.8686 29534 -2092 -3.6747 -40144 -4489 -1.4952 26675 -2097
10 -0.8339 27514 -2149 -3.3251 -36239 -4453 -1.0062 23132 -2175
H/L=0.3
15 -0.7992 25493 -2207 -2.9751 -32328 -4400 -0.8033 20832 -2240
20 -0.7643 23470 -2260 -2.6247 -28413 -2304 -0.7192 18824 -2304
5 -0.8543 30264 -1498 -3.1802 -39248 -4382 -1.2905 28584 -1495
10 -0.8133 27802 -1542 -2.837 -34873 -3494 -0.7527 23708 -1558
H/L=0.4
15 -0.7722 25336 -1586 -2.4934 -30487 -3435 -0.7676 20686 -1607
20 -0.731 22864 -1625 -2.1495 -26093 -3406 -0.6743 18131 -1654
5 -0.871 31876 -1169 -3.0141 40128 -3021 -1.300 31412 -1157
10 -0.8212 28938 -1244 -2.6597 -35209 -2970 -0.6833 25204 -1212
H/L=0.5
15 -0,7712 25984 -1058 -2,3052 -30269 -2904 -0.761 21429 -1255
20 -0.7209 23018 -1276 -1.9505 -25317 -2868 06577 18280 -1295
Table (3) : The obtained results for other cases...
0.5
. e &
fhi\’h??:.*)-\ “-QL ol Y N @,.&";-?;-C ):? o ?J
0 -—n "~ E al e L T 3 Fy J
E r :‘\’ - ""A-‘ ‘*‘ : 4
= -0.5 S >
.Q 1 I \\. f’
8 - 1 \4\ '{-J
= -1.5 S ps =
o "0l g 5 == H/IL=Firsteircle 10%
(] 2 ] A‘(‘ A (WY 1 £
- < ™ c=Crcie-touf
M 'J"J
95 1 1 [, T 1 L i
0 200 400 600 800 1000

Fig.(17): Variation in floor beam deflection after using circle solution technique
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Itreation 1 2 3 4
(Max.Deflection/530)*100 0.465 % 0.347 % 0.20628 % 0.0706 %
Max.Bending moment,mt 31860 22899 14820 7100
Max.Normal force. t 25017 2705.7 2932%* 3249

Tabled: the obtained results for circle of solution..
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Fig.(18):Max.Deflection in floor beam for each circle of solution.
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Fig.(19):Max .Moment in floor beam for each circle of solution.
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Fig.(20):Max .Normal Force in floor beam for each circle of solution.



